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A test comprised of binary items has an associated theoretical structure (TS) T,(D, R, E),
which may be paired with any of a number of possible quantitative characterizations
(QCs). The aim of test analysis is to examine whether a set of test items conforms to an
appropriately chosen QC. In this article, the authors consider one of the most common
TSs, TP(D, R, E), in which D = 1 construct, R = monotone increasing item/construct re-
gressions, and E =errors in variables. The authors then consider two QCs appropriate for
this TS and review tests for each. Several examples are provided.

It is well known that the regression of a dichotomous item on a continuous
latent variable is necessarily nonlinear (McDonald, 1980; Mislevy, 1986).
Hence, the fitting of a linear model to a set of dichotomous items results in
misspecification that undermines the making of meaningful claims about the
measurement characteristics of the items (e.g., dimensionality) (Mislevy,
1986). That is, the possibility of initial misspecification means that it is not
possible to distinguish between a lack of fit resulting from poor scale per-
formance and a lack of fit resulting from the incorrect choice of a class of
models to investigate this performance. Conversely, the adequate fit of a
model to the data in ¢ dimensions might, nevertheless, be an inappropriate
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representation if misspecification error is large. A more appropriate class of
model might require only s (s < f) dimensions. This is precisely what occurs
when difficulty factors (cf. McDonald & Ahlawat, 1974) arise in the linear
factor analysis of dichotomous Guttman scalable items (see, e.g., McDonald &
Ahlawat, 1974). In fact, as McDonald (1983) showed, an s-dimensional gen-
eral nonlinear factor analysis model always is equivalent to a p > s dimen-
sional linear factor analysis model. That is, if Y is a p vector of continuous
random variables and

Y =m(®) +e, E(Y0) =m(8), E8 =0, 0’ = 1, C(Y16) = Q.

with m representing a p vector of possibly nonlinear functions (and possibly
different across items), then

C(Y) = Clm(8), m(8)'] + Qypg = AA'+ Qi

with A being a p X m matrix of real coefficients of rank = m > 1. Therefore, at
the covariance structure level, it is not possible to distinguish between, e.g., a
1-dimensional monotone factor analysis solution and an s > 1 dimensional
linear factor analysis solution.

However, what seems to be less well respected is the principle that for a
scale to be judged as “poor,” it must lack empirical conformity to its theoreti-
cal structure (TS). Let T, represent a scale comprised of p dichotomous items
and assume that the test was constructed to conform to a particular TS. The
TS of atest is, generally speaking, a loose, linguistic specification of how the
test is structured. Among other things, it represents, in premathematical
terms, how the items are linked to the construct they are designed to measure.

In practice, the TS often lacks formalization and is conceptualized in figu-
rative terms (e.g., these p items fap a single underlying dimension). On the
other hand, it might be implied by the scoring rule of the test (e.g., a total
score is computed for 7, implying a unidimensional TS). Regardless, in most
cases, the TS may be represented (somewhat incompletely) as TP(D, R,E),in
which D is the number of constructs that the test items are designed to mea-
sure (i.e., the theoretical dimensionality of the test), R is the (theoretical)
brand of item/construct regressions, and E is the (theoretical) error structure
of the items (e.g., whether they are viewed as “pure” or fallible indicators of
the construct to be measured). The TS of a particular test is given by specify-
ing a value for each of D, R, and E.

The TS of a test, while representing in rough terms how the test should be-
have, has no empirical implications for the multivariate distribution of test
items. Hence, the empirical analysis of the performance of a test requires that
its T,(D, R, E) be given a quantitative characterization (QC). A QC is a test-
able psychometric phrasing of the TS. It is a set of testable requirements for
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the multivariate distribution of the test items that, in addition, is “in keeping”
with T (D, R, E). For any T(D, R, E), there will exist many possible QCs.
Standard test theory models are QCs of particular 7(D, R, E). Common
unidimensional linear factor analysis, for example, is a possible QC for Tp(l s
linear, errors in variables) and, of course, implies that for some latent variable
0, C(Y18) =Y, or, equivalently, that the “tetrad condition” holds: p_*p,, =
P.*P., (V x, y, u, v distinct) (Spearman, 1927).

In a “decision-oriented” test analysis, the aim is to arrive at justifiable con-
clusions about a test’s performance and, in particular, to make a decision
about whether it is performing “adequately.” No claim is made here about
whether this aim is a reasonable one, only that this brand of test analysis is
common in the social sciences. One examines whether the consequences em-
bodied in a QC hold for the empirical distribution of the test items and speaks
of the test as “performing poorly” to the extent that they do not. As an aside,
we echo Thissen, Steinberg, Pyszczynski, and Greenberg (1983) in viewing
considerations of test score reliability as subordinate to a demonstration that
the test is empirically in keeping with its TS.

Clearly, the mere fitting of even an item response model to a set of dichoto-
mous items does not necessarily provide a basis for drawing conclusions
about whether the items perform well as a test. The making of sound claims
about a test requires a serious consideration of the conformity of the empiri-
cal distribution of the items to a properly chosen QC. Now, the TS of many
tests comprised of dichotomous tests implies nothing more than monotone
increasing regressions of the items on a single implied latent variable, that is,
something like 7,(1, monotone increasing, errors in variables).' The regres-
sions are not required to be of any particular parametric form, just monotone.
For such tests, decision-oriented test analysis is not possible with generic
item response models. In this article, we review useful but little-used theory
for tests with TSs of this type and provide several examples illustrating these
procedures.

Unidimensional Monotone Latent Variable and
Monotone Positively Correlated Latent Variable Models:
Two Quantitative Characterizations

An appropriate choice of QC for tests with 7,(1, monotone increasing, er-
rors in variables) is the class of unidimensional monotone latent variable
(UMLV) models (Holland & Rosenbaum, 1986). UMLYV models are item re-
sponse models,

Px=x)=[ [ TIPX,=110) [1-P(X, =110 dF@, ()



MARAUN ET AL. 919

with X a p vector of 0/1 random variates and with the following specializa-
tions: O is a scalar, the item/latent variable regression P(X; = 110) is any in-
creasing function of 0 (possibly different across items), and F(0) is arbitrary.
UMLYV models are unidimensional in the standard sense of conditional inde-
pendence given the latent variable 6. A second class of characterizations that
seems particularly useful is the class of monotone positively correlated latent
variable (MPCLV) models. These models are a specialization of Model 1, in
which there are m > 1 positively correlated latent variables, and the regression
of each item on each latent variable is monotone increasing. Put another way,
MPCLYV models do not include the specification of conditional independence
given asingle 0. For obvious reasons, this class of models is aless pleasing re-
ality for a set of dichotomous items. As Holland and Rosenbaum (1986)
stated, a scalar O “easily lends itself to the interpretation as an underlying
~‘true’ quantity that is fallibly measured by the observable responses in X”
(p. 1526). Unidimensionality also provides a justification for summative
scoring rules. However, even a well-constructed test with a unidimensional
TS may, in practice, include a number of positively related subclusters of
items. Thus, in certain contexts, an MPCLV characterization can be viewed
as a somewhat unsuccessful attempt to produce a unidimensional test.

Holland and Rosenbaum (1986) showed that if j dichotomous items are
described by a UMLV model, then they are conditionally associated (CA),
and certain relations hold among the set of 2’ observed proportions, P(X =
X.). In particular, the conditional covariances of all nondecreasing functions
of any subset of the j items, given any function of the remaining items, are
non-negative. That is,

Cld(Y), gY)In(Z)] 2 0 V d, g nondecreasing, X' = (Z', Y').

The non-negativity of covariances of nondecreasing functions of the items
clearly is a special case of CA, in which the conditioning is on the empty set.
If it is found that the items are, within reason, CA, then (if desired) a search
may be undertaken for a particular UMLV representation for the items. If, on
the other hand, it is found that the items are not CA, then it may be concluded
that no UMLV model describes the j items and that the items are not unidi-
mensional in this broad sense. Interestingly, it is not clear whether CA is suf-
ficient for a UMLYV representation (Holland & Rosenbaum, 1986).

On the other hand, a set of items that is described by a model within the
class of MPCLV models must exhibit strong positive orthant dependence
(SPOD) (Holland, 1981; Joag-Dev, 1983). For dichotomous items, this
means that for all pairs of disjoint subsets, A (with k items) and B (with n
items), of the j items (with k + n < j),

PXy=10Xs=D2PX, =D PXp=D), @
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P, =0 Xp=0) 2 P(Xy = 0) P(X; = 0), and ®

PXy=1nXs=0) <P, = D) P(X5=0. @

where 1 is a vector of 1° and Q is a vector of (. If the items are SPOD, then (if
desired) a search may be undertaken for an appropriate representation from
the class of MPCLV models. Holland (1981) showed that SPOD is a suffi-
cient condition for the existence of an MPCLYV representation for the items.

Although SPOD and CA are complete test conditions, in application they
are not without their problems (Zwick, 1986). In particular, the sets of condi-
tions that comprise SPOD and CA are too large to test comprehensively.
Therefore, the investigator must choose a subset of conditions and settle for
an incomplete test. This introduces a problem with the power of each test. If
the items do not conform to the chosen subset of conditions, then one may re-
ject CA (SPOD). On the other hand, if the items do conform, then one may
merely lack the power to correctly reject CA (SPOD). The power issue is then
2-dimensional. It pertains to both the proportion of conditions one requires to
make a reasonable decision about whether the items are CA or SPOD, and
statistical sample size requirements. Exactly how large a proportion of condi-
tions (and which conditions) is required is an interesting question, one not
dealt with in the current work. Regardless, it might be argued that it is more
desirable to assess whether a set of items is roughly CA (SPOD) via an in-
complete test than to make a rash conclusion on the basis of an inappropri-
ate QC.

It also might be asked why one would not simply employ any of a number
of common procedures, for example, Stout’s (1987) DIMTEST theory, the
linear factor analysis of a matrix of tetrachoric correlations, or parametric
item response theory. The reason is that there is more than just one definition
of unidimensionality, and these approaches do not instantiate the particular
brand of unidimensionality implied by 7,(1-dimensional, monotone increas-
ing, errors in variables). Let Y be a p vector of continuous latent variates and
X be obtained by dichotomizing Y according to a p vector of thresholds 7.
Then both the linear factor analysis of a matrix of tetrachoric correlations and
Model 1 with P(X, = 116) = ®[a(6 - b))] attempt to assess whether Y is unidi-
mensional in a linear factor analytic sense. That is, they attempt to determine
whether there is a random variable 0 (the common factor), with E(0) =0 and
o, = 1 such that

(Y10) ~ N(AS, \Pdiag)! and ;= a- 7“21')’

so that Ry = AA" + P.

This is clear from the following argument. Consider the parametric case of
Model 1 with P[X, = 116) = ®(a,(6 - b)], that is, the normal ogive random item
response model,
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PX = x)=[_[[@@@-s)"[1I-0@@-b) "dFO). ()

Model S is arepresentation of X if and only if X has an equivalent representation

P(X =X)=[_ [ f®I®)drdr®)= [  f@)ay ©)

with Y a p vector of continuous latent variates, ya p vector of thresholds, and

(Y16) ~ N(AB, ¥,,), 0" =1, and y,= (1 - ?»zj).

Thatis, X is representable as in Model 5 if and only if it is representable as the
dichotomization of a vector of latent variates Y that conform to a common
unidimensional linear factor model (Bartholomew, 1981; Maraun, 1993;
Muthen, 1978). In particular, {Y10) must be multivariate normal, the Y; must
be independent conditional on 8, and E(Y10) must be a linear function of 6. In
this case, Zy = Ry = AA” + ¥ and contains the correlations estimated by the
tetrachoric correlations computed on the X;. The following parameter corre-
spondence exists between the two representations:

ab;

9 -
K’—Jl+aj” Y J1+aj’

On the other hand, CA tests whether there is arandom variable 0 (the com-
mon factor), with E(0) = 0 and 6% = 1 such that

AXI6=6)=TIAY0 =6,) )

E(Y10) = m(0) not necessarily linear, but monotone increasing. (8)

Hence, the aim of CA also is to assess whether Y is unidimensional but, quite
clearly, in a different sense than the unidimensionality embodied by linear
factor analysis. The failure to instantiate the particular brand of unidimen-
sionality called for by T,(1, monotone increasing, errors in variables) also is
why DIMTEST is not an appropriate choice.

An (incomplete) test of CA may be carried out in two stages. In Stage 1,
the item covariances are checked for non-negativity. Given that CA is not re-
jected in Stage 1, a strong (but incomplete) test of CA can be made, following
Zwick (1986) and Holland and Rosenbaum (1986), with Mantel-Haenszel
test statistics (Mantel & Haenszel, 1959). Specifically, the conditional co-
variance of each pair of items, given the total score on the remaining (p — 2)
items, is tested for non-negativity. The Mantel-Haenszel statistic, in this case,
is a weighted average of the conditional covariances in each 2 X 2 slice of the



922 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

2 X 2 x (p —2) contingency table of item pair by total score. Due to the large
number of tests typically involved, a should be set to a conservative value. To
be on the safe side, 5% or more of the individual tests should indicate a statis-
tically significant negative conditional covariance before declaring that the
test as a whole does not exhibit CA. The test of SPOD is likewise limited by
the heavy computational cost of dealing with the full set of inequalities perti-
nent to SPOD. Therefore, the search for disconfirming evidence may begin
with 3-way subsets of the full p-way array. For 3-way data, inequalities of
Type 3, for example, are of the form

P(TEM, = 1 N ITEM, =1 A\ ITEM, = 1) >
P(ITEM, = 1 A ITEM, = 1) PATEM, = 1).

The rejection rule for SPOD can be set as for CA, that is, if more than 5% of
the inequalities do not hold.

Example 1: Data From the Self-Monitoring Scale

To date, many analyses of the Self-Monitoring Scale (SMS) (Snyder,
1974) have been carried out. The conclusions arising from these studies have
not been very positive, for although the scale has a unidimensional TS, the
majority of these studies (Briggs & Cheek, 1988; Briggs, Cheek & Buss,
1980; Hoyle & Lennox, 1991; Tobey & Tunnell, 1981) have shown the scale
to be of a higher dimensionality. The consensus now seems to be that the scale
has a dimensionality of at least three. If a disparity between the TS and em-
pirical dimensionality of the SMS does in fact exist, then it has implications
for the scale’s use. For example, such a disparity suggests that the summative
scoring rule of the SMS lacks justification. This very possibility has, in fact,
motivated a number of major revisions to the scale (e.g., Gangestad & Snyder,
1985; Lennox & Wolfe, 1982).

The conclusion that the scale does not perform as it should might, how-
ever, be somewhat rash. This is because the majority of previous studies have
employed linear factor and component models to analyze the SMS. Yet, these
models do not provide a basis for reaching justifiable conclusions about the
scale’s possible departure from its TS. In the first place, the SMS is com-
prised of dichotomous items. In the second place, the TS of the SMS implies
nothing more than monotone increasing regressions. For these two reasons, it
is not appropriate to pass judgment on the performance of the SMS based on
linear factor models or even generic item response models. An appropriate
QC for the SMS is the class of UMLV models. Empirical conformity to a
UMLV characterization would justify the summative scoring rule of the
SMS. A second, less adequate candidate is MPCLV.,

Responses to the 25 items of the SMS were obtained from a sample of 903
students at the University of Guelph. Items and their means are provided in
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Table 1. An examination of the 300 covariances revealed that there were only
a small number of (marginally) negative covariances. For the Mantel-
Haenszel statistics, ot was set to .01 with a resulting one-tailed critical value
of 2.33. Of the 300 Mantel-Haenszel statistics computed, 116 (38.7%) were
negative, 10% leading to rejection of the non-negativity hypothesis. There-
fore, it was concluded that the scale did not have a UMLYV representation and
so was not unidimensional in this sense. For the test of SPOD, 45.6% of the
required 3-way inequalities were violated. Therefore, it was concluded that
the scale was not in keeping with an MPCLYV representation. What is implied
by these findings is that at least some of the items have nonmonotone rela-
tions with the latent variables or, in other words, are characterized by multiple
negatively correlated latent variables. This structuring of the items obviously
is a serious departure from the TS of the SMS.

Example 2: Artificial Data

This section is not in any way presented as a simulation study. Instead, the
section presents the analyses of several sets of data useful in illustrating
points made earlier in the article. Consider Model 6 with (¥18) ~ N(m(0),

Wyp)s 0 ~ N(O, 1); and m, = exp[.24(0 - .75)] / 1 + exp[.24(0 - .75)]; m, =
SIn(0 +4); m, =exp(0°); m,=exp[5.05(0-1.75)]/1 +exp[5 05(0-1.75)]; m;=
exp[.75(0 - 1 75)1/1 +exp[.75(8 — 1.75)]; m, = 0010’ + .058; m, = .005In(@
+3);7'=1.5.35.151.4-3-25 .2]; y,=.04 V . The regressions are depicted
in Figure 1. With these choices for m(0), this is a UMLV model. According to
the previously reviewed theory, a program such as TESTFACT (Wilson,
Wood, & Gibbons, 1991), which employs full information factor analysis to
fit Model 5, should not lead to a correct decision about data generated on the
basis of this UMLV model. A test of CA, on the other hand, should lead to the
correct conclusion that data generated on the basis of this model are describ-
able within the class of UMLV models. A total of 900 realizations were taken
of X, generated on the basis of this UMLV model. TESTFACT rejected solu-
tions of from one to three dimensions, whereas all 21 Mantel-Haenszel statis-
tics were positive, leading to the correct decision that X was representable
within the class of UMLV models.

Consider a 2-dimensional version of Model 6 for 25 items in which (Y18)
~N(AS,¥,,,),8~N,©Q,D),y,=(1- ij), and y range from-1.5to +1.5. In ad-
dition, for 13 of the items A, =.8 and A, =1, whereas for the other 12 items A,
=.landA,=.8.Hence,Z, =R, = AA' + W. This model is not a UMLV model
butis mstead an MPCLV model. A total of 900 realizations of X were gener-
ated on the basis of this model. The Mantel-Haenszel procedure was then em-
ployed to test whether the items were CA. Figure 2a is a histogram for the 300
Mantel-Haenszel statistics.



924 EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT

Table 1
Means for Items of Self-Monitoring Scale

Item Mean
1. Ifind it hard to imitate the behavior of other people (F) 421
2. My behavior usually is an expression of my true inner feelings, attitudes,

and beliefs (F) 344
3. At parties and social gatherings, I do not attempt to do or say things that others

will like (F) 301
4. 1 can only argue for ideas that I already believe (F) 476
5. I can make impromptu speeches on topics about which I have almost no

information (T) 316
6. I guess I put on a show to impress or entertain people (T) 340
7. When I am uncertain how to act in social situations, I look to the behavior of

others for cues (T) 811
8. I probably would make a good actor (T) 344
9. Irarely need the advice of my friends to choose movies, books, or music (F) 737

10. I sometimes appear to be experiencing deeper emotions than I actually am (T) 332

11. Ilaugh more when I watch a comedy with others than when I am alone (T) 464

12. In a group of people, I rarely am the center of attention (F) .565

13. In different situations and with different people, I often act like very different

people (T) .585

14. Iam not particularly good at making other people like me (F) .163

15. Even if I am not enjoying myself, I often pretend to be having a good time (T) 403

16. Iam not always the person I appear to be (T) .644

17. 1 would not change my opinions (or the way in which I do things) to please

someone else or win their favor (F) 615

18. I have considered being an entertainer (T) 212

19. To get along and be liked, I tend to be what people expect me to be rather

than anything else (T) .184
20. I have never been good at games like charades or improvisational acting (F) 457
21. I have trouble changing my behavior to suit different people and different

situations (F) 236
22. At parties, I let others keep the jokes and stories going (F) .520
23. I feel a bit awkward in company and do not show up quite as well as

1 should (F) 335
24. I can look anyone in the face and tell a lie with a straight face (if for the

right end) (T) 478
25. I may deceive people by being friendly when I really dislike them (T) 542

Note. The symbol T (F) indicates that endorsement (lack of endorsement) of the item is scored in the direc-
tion of self-monitoring.

With « set (as before) to .01, 154 of the 300 tests resulted in rejections,
leading to the decision that the items were not describable as a UMLV model.
It also is interesting to observe the complete separation of the distributions of
negative and positive Mantel-Haenszel statistics. It is our experience that for
tests with a large number of items, a histogram of Mantel-Haenszel statistics
is very useful in diagnosing the structure of the items (much as
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Figure 1. Regressions of Y;on 0.

autocorrelation function plots are useful in identifying time-series models).
For the test of SPOD, 1.9% of the required inequalities were violated, leading
to the conclusion that the data are indeed describable in MPCLV terms.

As afinal example, consider Model 6, for 25 items, in which (Y10) ~ N(A6,
W), 0~NO, 1), y=(1- ).2]), yrange from-1.5to+1.5,A’=[A/, A/, 0L, A/
=[-9-8-7-6-5-4-3-3-2-2-1-~1],and A, =-A,". Obviously,
this is neither a UMLYV nor an MPCLYV model. A total of 900 realizations of X
once again were generated on the basis of this model. Figure 2b is a histogram
for the Mantel-Haenszel statistics. Approximately 26% of the Mantel-
Haenszel tests were statistically significant, leading to the correct rejection of
UMLV. Once again, a separation between the distribution of the positive and
negative statistics clearly is evident. As one would expect, this separation dis-
appears as negative loadings become less extreme.
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2a)

-10.5

2b)

Figure 2. Histograms of Mantel-Haenszel statistics.

Discussion

The aim of this article certainly was not to enshrine the use of Mantel-
Haenszel statistics as a new dogma of test theory. Instead, the aim was chiefly
to endorse logical test analytic thinking. Specifically, in applied test theory,
researchers tend to employ models in a generic fashion. However, a model
has implications for the quality of a test only if it is a QC for the TS of the test.
Spearman (1927) created linear factor analysis as a mathematical paraphrase
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of his ideas about intelligence tests. This is the type of thinking that applied
test theory requires, for test theory is fundamentally about the correct para-
phrase of TSs. The details associated with the implementation of each par-
ticular QC, including that of CA and SPOD, is an important but secondary
matter.

For the particular case of tests comprised of dichotomous items and with
T(1, monotone increasing, errors in variables), the classes of UMLV and
MPCLV models are arguably appropriate QCs. Judging from the applied lit-
erature, this fact does not seem to be well known. What one sees in practice
are “test analyses” in which a parametric item response model or, even worse,
a linear factor model is applied to items regardless of the particularities of
their TS. It is suggested here that this type of analysis is somewhat antitheti-
cal to the purpose of test analysis. The purpose of test analysis is not typically
the mere representation of a set of items by a mathematical model but rather
the assessment of whether the test conforms to its TS. This clearly was the
aim of previous analyses of the SMS. For example, Hoyle and Lennox (1991)
state, “Although the construct of self-monitoring has assumed a central role
in the description and explanation of human behavior, there is considerable
disagreement about the performance of the Self-Monitoring Scale” (p. 511).
Given this aim, it is unfortunate the frequency with which test analyses are
rendered impotent by a lack of care in the pairing of QC with TS.

Note

1. It is assumed throughout that the items have been recoded in such a way that they all have
monotone increasing regressions.
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